

Generating Vector Fields of the Metric Semi-Symmetric Connection on Almost Hyperbolic Kaehlerian Manifolds

Umraw Singh Negi^{1*} • Preeti Chauhan¹

¹Department of Mathematics, H.N.B. Garhwal University (A Central University), S.R.T. Campus Badshahi Thaul, Tehri Garhwal – 249 199, Uttarakhand, India

Corresponding Author Email: <u>usnegi7@gmail.com</u>

Received: 17.4.2021; Revised: 11.5.2021; Accepted: 14.5.2021

©Society for Himalayan Action Research and Development

Abstract: Negi and Semwal (2011), have studied on almost Kaehlerian conformal recurrent and symmetric Manifolds. In this paper, we have defined and calculated Generating vector fields of the metric semi-symmetric connection (**MS-Sc**) on almost Hyperbolic Kaehlerian Manifolds and its some theorems established.

Keywords: Geodesic Line • Induced and Isotropous Vector Fields • Hyperbolic Kaehlerian Manifolds

Mathematics subject classification 2010: 53A30, 32C15, 53C55.

1. Introduction:

A n (= 2m) dimensional Riemannian space M_{j} with metric tensor (\mathcal{G}_{ij}) indicates the structure by $\begin{cases} i \\ j \\ k \end{cases}$ of covariant differentiation in the direction of the Levi-Civita connection (L-Cc) by ∇ and modules of its curvature tensor by K_{jkl}^{i} (or K_{ijkl}). The geodesic line of L-Cc is differentiated by the following [Mizusawa and Koto (1960)]:

(1.1)
$$v^k \nabla_k v^j = 0,$$

where v^k locates a module of tangent vector field of the geodesic line.

The modules of **MS-Sc** are known as:

(1.2)
$$\Gamma^{a}_{ik} = \left\{ \begin{matrix} a \\ i \end{matrix} \right\}_{+} p_{i} \, \delta^{a}_{k} - p^{a} \, g_{ik}$$

where p_i and p^a are known as producer or induced vector field of **MS-Sc**. The torsion tensor is equal to [Goldberg (1956)]:

(1.3)
$$\mathbf{T}_{ik=}^{a} p_i \delta_k^{a} - p^k \delta_i^{a}$$

if (1.3) holds for v^k , then:

$$(1.4) p_k v^k v^j = p^j v_k v^k$$

while, we reflect on a Riemannian space and its metrics is absolutely exact then (1.3) reduces:

$$(1.5) p_k = {}^{\alpha} p_k$$

where α is a scalar function.

 α is the comparatively concurrent involving the geodesic line and But here effect of the function induce vector field of MS-Sc. Allocate us indicate the machinist of covariant differentiation in the ▼. then direction by

$$\nabla_k v_j = \dot{\nabla}_k v_j - \alpha (v_k v_j - g_{kj}) v$$

$$\dot{\nabla}_k p_j = \alpha_k v_j + \alpha \dot{\nabla}_k v_j$$

where v sets used for scalar four-sided figure of the vector v_k with $\alpha_k = \frac{\partial \alpha}{\partial x^k}$.

Now modules of Riemannian curvature tensor of MS-Sc can be communicated herein mode:

(1.6)
$$R_{ijkl} = K_{ijkl} + g_{ik} p_{lj} - g_{il} p_{kj} + g_{jl} p_{ki} - g_{jk} p_{li}$$

where K_{ijkl} signify Riemann curvature tensor module of L-Cc and contraction p_{kj} locates for:

(1.7)
$$p_{kj} = \nabla_k p_j - p_j p_k + \frac{1}{2} p_s p^s g_{jk}.$$

The tensor

$$p_{kj}$$
 is symmetric if and only if p_j is a gradient, that means

$$\alpha_k v_j - \alpha_j v_k = \alpha (\nabla_j v_k - \nabla_k v_j),$$

Or, equivalently

(1.8)
$$\frac{\partial v}{\partial x^k} = \frac{2}{\alpha} \left(\mu v_k - v \alpha_k \right)$$

where $\overset{\mu}{}$ stands for $\alpha_k v^k$.

Since the appearance (1.5), we simply obtain [Yano (1965)]:

$$R_{jk} = K_{jk} + (2 - n)p_{kj} - g_{jk}p_{s}^{s},$$

$$g_{kj}p_{s}^{s} = K_{jk} - R_{jk} - (n - 2)p_{jk},$$

$$np_{s}^{s} = K - R - (n - 2)p_{s}^{s},$$

$$p_{s}^{s} = \frac{(K - R)}{2(n - 1)},$$

$$p_{kj} = \frac{K_{jk} - R_{jk}}{n - 2} - \frac{K - R}{2(n - 1)(n - 2)}g_{jk}.$$

Here K_{jk} , K and R_{jk} , R, indicate Ricci tensor, curvature scalar for the Levi-Civita connection respectively.

Here, comprise the curvature tensor equation (1.5) convince the entire statistical conditions which are mainly universal for Riemannian curvature tensors to exist skew-symmetric into primary both indices regular in modify sets of primary with next couple of indices and to convince of initial Bianchi identity. The entire properties be fulfilled iff the induced vector field is an inclined [Prvanovic and Pusic (1995)].

There holds:

$$v^i \nabla_i v_k = 0$$
 and $p^i \nabla_i p_k = p^i \nabla_k p_i = \varphi p_k = \varphi \alpha v_k$.

Next, concern the Ricci character for connection to the producer and then we find:

(1.9)
$$\boldsymbol{v}\boldsymbol{\alpha}_j - \boldsymbol{\varphi}\boldsymbol{v}_j = 0.$$

Then there yields, in view of (1.7), $\frac{\partial v}{\partial x^k} = 0$, and from (1.8), we have $\alpha_k = \frac{\varphi}{v} v_k$, or $\alpha_k = f p_k$.

This represents every three vectors are mutually comparative. Therefore:

$$p_s p^s = \alpha^2 v$$

Besides:

$$\frac{\partial (p_{s}p^{s})}{\partial x^{k}} = p^{s} \nabla_{k} p_{s} + p_{s} \nabla_{k} p^{s} = p^{s} \alpha_{k} p_{s} + \alpha p^{s} \nabla_{k} v_{s}$$
$$= 2\alpha_{k} p_{s} p^{s} + 2\alpha p^{s} \nabla_{k} v_{s} = 2\alpha_{k} p_{s} p^{s} + 2\alpha^{2} v^{s} \nabla_{k} v_{s}$$
$$= 2p_{s} p^{s} \alpha_{k} = 2\alpha^{2} \alpha_{k} v.$$

As $\nabla_k v^s v_s = 0$ and consequently $v^s \nabla_k v_s = 0$, Then, on the other side

$$\frac{\partial (p_s p^s)}{\partial x^k} = 2p^s \nabla_k p_s = 2\alpha_k p^s p_s = 2\alpha^2 v \alpha_k$$
$$= 2\alpha v \alpha_k.$$

Equating above effects for $\frac{\partial(p_s p^a)}{\partial x^k}$, we find $\alpha = 1$ or $\alpha_{k=0}$. Then: (1) (p_k) and (v_k) are equivalent, both slopes, both of regular span. or

(2) (p_k) and (v_k) are smooth vectors, equally of regular span and equally slopes.

Definition (1.1): In a Riemannian manifold, the curvature tensor of **MS-Sc** fulfilled entire extremely regular statistical conditions of the **L-Cc** and tangent vector fields of the geodesic lines are smooth inclines of constant length.

2. Generating Vector Fields of the Metric Semi-Symmetric Connection on Almost Hyperbolic Kaehlerian Manifolds:

An almost hyperbolic Kaehlerian manifolds are 2n-dimensional pseudo-Riemannian manifolds, capable

by a non-disintegrate formation tensor F_j^i gratifying: (2.1) $F_j^i F_k^j = \delta_k^i$, $F_{ij} = -F_{ji}$, $\nabla F_{ij} = 0$.

Here, we know that a almost hyperbolic Kaehlerian manifolds is in fact a product manifold, but its covariant structure tensor is skew-symmetric. Besides, the structure tensor has n linearly independent Eigen vectors, by the fact of skew-symmetry of the structure, it sends any vector into an orthogonal vector and Eigen vectors of the structure are consequently, self-orthogonal. In any point of a hyperbolic almost Kaehlerian manifold, its tangent space can be spanned by these self-orthogonal vectors, it is its adapted basis. It is obvious that these are two Eigen subspaces of equal dimension, for two structure's eigenvalues, **1 and -1.** on both these invariant subspace, the metric tensor vanishes. Actually, a hyperbolic almost Kaehlerian manifolds in any point is a product of two totally geodesic subspaces. This is the reason to investigate geodesic lines of this kind of space. Here we may have such geodesic lines which are minimizing the distance between two different points up to zero, from one point, we may reach another point instantly along such a geodesic line.

Theorem (2.1): Proved that Riemannian spaces curvature scalar of Levi-Civita connection of **MS-Sc** and F-connection are commonly equivalent.

Proof: We have **MS-Sc** of an almost hyperbolic Kaehlerian manifolds contain the torsion tensor:

(2.2)
$$T_{ij}^{k} = p_{i}\delta_{j}^{k} - p_{j}\delta_{i}^{k} + q_{i}K_{j}^{k} - q_{j}F_{i}^{k},$$

where p_i and q_i are modules of positive vector fields. If this connection to be a metric one, then its modules:

(2.3)
$$H^a_{ik} = \begin{cases} a \\ i \\ k \end{cases} + p_i \delta^a_k - p^a g_{ik} - q_k F^a_i$$

If this signify that $\nabla F = 0$. then

(2.4)
$$q_j = -\frac{n}{2} p_a F_j^a$$
, $p_a F_j^a = -\frac{2}{n} q_j$

Then we can denote:

where Γ_{ik}^{a} exists module of Riemannian spaces and module of identical on the adjunct pseudo-Riemannian manifolds, fulfilling forms of definition (1.1) [Gray (1967)].

At present, compute the coefficients of (2.3), we get:

$$\overline{R}_{ijkl} = R_{ijkl} - F_{ji} \left(\overline{\nabla}_{l} q_{k} - \overline{\nabla}_{k} q_{l} \right) + + q_{k} \left(p_{j}F_{li} + \frac{2}{n} q_{j}g_{li} + \frac{2}{n} q_{i}g_{lj} + p_{i}F_{jl} \right) - - q_{l} \left(p_{j}F_{ki} + \frac{2}{n} q_{j}g_{ki} + \frac{2}{n} q_{i}g_{kj} \right) + p_{i}F_{jk}$$

By R_{ijkl} indicate a module of curvature tensor gratifying the def (1.1) and \overline{R}_{ijkl} is skew-symmetric into initial indices. \overline{R}_{ijkl} is consistent in growing places of primary and next couple of indices iff the tensor ($p_lq_k + q_lp_k$) is skew-symmetric. Then:

$$p_k p^k q_l = - p^k q_k p_l.$$

As the vectors p^k and q^k are mutually orthogonal, there yields $p_k p^k = 0$. Its indicates the producer on the Riemannian spaces of F-connection is an isotropous slope and harmony through declaration of definition (1.1). Therefore vector q_k as well isotropous slope.

Theorem (2.2): The curvature tensor of a **MS-Sc** and F-connection on the almost hyperbolic Kaehlerian manifolds invariable in varying sets of primary and next couple of index and making the primary Bianchi

identity iff the producers on association are isotropous i.e. $\nabla_a p^a = 0$ and conversely.

Proof: We have from (2.3), the pseudo-Riemannian manifolds structures and v^i is satisfied following:

(2.6)
$$p_j \delta_k^i v^j v^k - p^i q_j v^j v^k - q_k F_j^i v^j v^k = \frac{2}{n} p_j v^j v^i$$

(2.7)
$$(p_j v^j - v_j v^j - \frac{2}{n} p_j v^j) v^i = -q_k v^k u^i,$$

where

$$u^i = - F^{ji} v_j = F^{ij} v_j.$$

Then, from (2.7),

(2.8)
$$u^i = \alpha v^i$$
, or $q_k v^k = 0$.

If the eigen values 1 or -1, therefore $q_k v^k$ are equals to:

$$\frac{n-2}{n}p_jv^j - v_jv^j = \frac{n-2}{n}p_jv^j$$

and from (2.8), correspond the vectors modified:

(2.9)
$$p = p^a l_a + p^b l_b^{\circ}$$
,

where $l_{\hat{h}}$ are eigen vectors, used for eigen values -1, we get:

$$q = -\frac{2}{n} p^a l_a + \frac{2}{n} p^b l_{\hat{b}}$$
 and $v = v^a l_a + v^{\hat{b}} l_{\hat{b}}$.

Then (2.8) gives:

(2.10)
$$q_k v^k = \frac{2}{n} \left(p^{\hat{b}} v^a - p^a v^{\hat{b}} \right) g_{a\hat{b}} = 0,$$

That is fulfilled; as well as v is comparative to p and isotropous.

While the almost hyperbolic Kaehlerian manifolds induced vector fields of similar line containing several its autoparallel lines in ordinary with L-Cc is isotropous, (1.6) appears that procedure:

$$(2.11) p_{kj} = \nabla_k p_j - p_k p_j$$

and

(2.12)
$$\nabla_s p^s = p_s^s = \frac{K-R}{2(n-1)}$$

Constricting the tensor $(\nabla_k q_l - \nabla_l q_k)$ through the tensor F_b^l , we attain $-\frac{2}{\nabla}\nabla m + \frac{2}{2}F^{l}F^{a}\nabla m = -\frac{n}{2}\nabla m + F^{l}\nabla a$

$$\frac{-\frac{1}{n}\nabla_k p_b + \frac{1}{n}F_b r_k v_l p_a = -\frac{1}{2}\nabla_k p_b + F_b v_l q_l}{\frac{n-4}{2n}\nabla_k p_b} = F_b^l \left(\overline{\nabla_l q_k} - \frac{2}{n}F_k^a \overline{\nabla_l p_a} \right).$$

and

Contracting the last relation with g^{kb} , we obtain:

$$\frac{n-4}{2n} \dot{\nabla}_a p^a = -\frac{2}{n} \dot{\nabla}_a p^a + \frac{2}{n} p_a p^a = 0.$$

If n > 4, then

$$(2.13) \qquad \qquad \nabla_a p^a = 0.$$

K = R.Then, by (2.12),

On the other hand, from (2.5) and the shape of the curvature tensor, we can obtain that:

(2.14)
$$\overline{R} = R + F^{lk} \left(\dot{\nabla}_l q_k - \dot{\nabla}_k q_l \right)$$
$$\overline{R} = R + \frac{2}{n} \left(\dot{\nabla}_l p^l + \dot{\nabla}_l p^l \right) = R + \frac{4}{n} \dot{\nabla}_l p^l$$

or

Therefore this tensor to gratify initial Bianchi identity with appearance for warp tensor, after that established:

 $\nabla_a p^a = 0.$ (2.15)Hence theorem (2.2) is proved.

References:

- Goldberg SI (1956). Note on projectively Euclidean Hermitian spaces, Proc. Nat. Acad. Sci. U.S.A., pp. 128-130.
- Gray A (1967). Pseudo-Riemannian almost product Manifolds and submersions, Mich. Math. J. 16, pp. 715-737.
- Mizusawa H and Koto S (1960). Holomorphically projective curvature tensors in certain almost Kaehlerian spaces, J. Fac. Sci. Niigata Univ. 2. pp. 33 – 43.
- Negi U S and Semwal Ashish (2011). The study on almost Kaehlerian conformal recurrent and symmetric Manifolds, International

journal of mathematical Archive- 2(9), pp. 1666-1671.

- Prvanovic M and Pusic N (1995). On Manifolds admitting some semi-symmetric metric connection, Indian Journal of Math. 37(1), pp. 37-67.
- Yano K (1965). Differential Geometry on Complex and Almost Complex spaces. Pergamon Press, London, ******